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Abstract

This paper reports an application of the metapattern mechanism (Shen, Ong, Mit-
bander and Zaniolo 1994) to analyzing time sequence data for semiconductor process
control and fault-detection. The challenge of this task includes the high-dimensionality
and large quantity of data, several types of uncertainties in measurements, and lack
of effective machine learning tools for time sequence analysis. Using metapatterns, we
effectively find a nice angle to view the sequences and compare positive with negative
sequences. Such views and comparison helped us to develop a new technology called
time-sequence fault-detector. The main idea behind the detector is to learn a typical
positive sequence for each control parameter from the classified sequences, along with
thresholds for allowed deviations for values, durations, and time shifts. The typical
sequence and the thresholds are then used on-line as a basis to detect faults in new
and unclassified sequences incrementally. At the present, this detector is realized as a
new action for metapatterns (composed from previous metapattern actions), and per-
forms well on the example sequences that are currently available to us. Ultimately, this
detector will perform on-line on Motorola’s semiconductor plasma machines to detect
deficiencies of operations on wafers in real-time.

Key Words: metapattern, time sequence data, clustering, classification, and discrimi-
nation analysis.



1 Introduction

Time sequence data pose some unique challenges for today’s knowledge discovery tools.
Because of their high dimensionality and large quantity, time sequence data require good
facilities to identify critical attributes and focus attention to the important aspects of the
data. Due to the multiple sources of uncertainties, such as variations on values, durations,
and time shifts, time sequence data demand more sophisticated techniques to deal with
noises. Furthermore, since there are temporal dependencies between values of a parameter,
time sequence data often cause many off-shelve machine learning algorithms to break down
or perform at a sub-optimal level.

In this paper, we report our progress of applying the metapattern mechanism (Shen,
Ong, Mitbander and Zaniolo 1994) to the analysis of time sequence data. As described in
earlier papers, a metapattern is in essence a second-order template that specifies the type of
patterns to be discovered. For example, let P, @ and R be variables for predicates, then a

metapattern
P(X,Y)AQ(Y,Z) = R(X, Z)

specifies that the patterns to be discovered are transitivity relations p(X,Y) A ¢(Y,Z) =
r(X, Z), where p, ¢, and r are specific predicates. One possible result of this metapattern is
the pattern

citizen(X, Y )AofficialLanguage(Y, Z) = speaks(X, Z)
with a probability (say 0.93),

where citizen, officialLanguage, and speaks are relations that bind to P, @), and R, respec-
tively, in the current database.

In general, a metapattern can be viewed as a two-part specification: the left-hand side
specifies a constraint on how data should be prepared, and the right-hand side specifies
an action to be applied on the prepared data. For example, the left-hand of the above
example, when P and @ are bound to specific predicates p and g respectively, is a constraint
on how to fetch those data pairs (X, Z) that satisfy p(X,Y) A q(Y, Z). The right-hand of
that example, when R is bound to a specific predicate r, is interpreted as an action that
computes the ratio of (X, Z) pairs, among those returned by the left-hand side, that satisfy
r(X,Z). (In fact, the precise syntax for the right-hand side of the above metapattern is
TruthRatioComputer(R(X, Z)), where TruthRatioComputer is an action that performs the

described procedure.)
At the present, the mechanism supports the following four basic metapattern actions:

o TruthRatioComputer(r,[X, Z, ...]), where r is a predicate and [X, Z,...] is a tuple of
variables for a given set of data. This action returns an expression r(X, Z,...) along
with a number (such as the probability 0.93 in the above example) indicating the ratio
of the given data tuples that satisfy the predicate r(X, Z,...).

e Ploter([X, Z, ...]). This action simply plots the given set of data.

o Classifier([X, Z,...]). This action uses the CDL incremental learning algorithm (Shen
1994) to return a set of class descriptions that best classify the given data.

2
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Figure 1: Metapattern and the Discovery Loop

o Cluster([X, Z,...]). This action uses a Bayesian-based Cobweb clustering algorithm
(Fisher 1987; Shen 1994) to return a set of cluster descriptions that best cluster the
given data.

As shown in Figure 1, metapatterns serve as the link between the inductive and deductive
aspects of knowledge discovery, effectively facilitating a deductive-inductive discovery loop.
Metapatterns outline the data collecting strategy for the deductive part of the loop; they
serve as the basis for the generation of specific queries, which are obtained by instantiating
the variables in the metapatterns with values representing tables and columns in the database
of interest. These instantiated queries are then run against the database to collect relevant
data. Similarly, metapatterns also serve as a generic description of the class of patterns to
be discovered and help guide the process of data analysis in the inductive part of the loop.
The patterns discovered from the database adhere to the format of the current metapattern.

Metapatterns can be specified by human experts or alternatively, they can be automat-
ically generated from the database schema. Either way, they serve as a very important
interface between human “discoverers” and the discovery system. Using metapatterns, hu-
man experts can focus the discovery process onto more profitable areas of the database; the
system generated metapatterns provide valuable clues to the human expert regarding good
start points for the database searches and also serve as the evolutionary basis for the devel-
opment of user specified metapatterns more attuned to the discovery goals as envisaged by
the human expert.

For time sequence databases, metapatterns provide a flexible way to carve the data in a
particular way and give inspirations to human analysts. Using metapatterns, we effectively
find a nice angle to view the sequences and compare positive with negative sequences. Such
views and comparison helped us to develop a new technology called time-sequence fault-
detector. The main idea behind the detector is to learn a typical positive sequence for each
control parameter from the classified sequences, along with thresholds for allowed deviations
of values, durations, and time shifts. This typical sequence and the thresholds are then used
on-line as a basis to detect faults in new and unclassified sequences incrementally. At the
present, this detector is realized as a new action for metapatterns (composed from previous
primitive actions), and performs well on the example sequences that are currently available
to us. Ultimately, this detector will perform on-line on Motorola’s semiconductor plasma

3
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machines to detect deficiencies of operations on wafers.

In the rest of this paper, Section 2 gives an overview of the metapattern mechanism,
Section 3 describes in detail the problems we face in fault-detection in Plasma processes,
Section 4 provides our initial solutions and results, and finally, Section 5 concludes the paper

with discussions and future work.

2 The Metapattern Mechanism

Figure 2 illustrates the current implementation of the metapattern mechanism. The deduc-
tive part of the system is a deductive database technology called LDL++ (Naqvi and Tsur
1989; Arni, Ong, Tsur, and Zaniolo 1994), and the inductive part of the system includes a
set of actions such as TruthRatioComputer, Ploter, Cluster, and Classifier. Given a database
and its schema, the metapattern generator suggests a series of valid metapatterns. Users can
either pick some of the suggested metapatterns or they can specify their own metapatterns
to be run. On being provided with a metapattern as input, the instantiator generates a set of
corresponding LDL++ queries by instantiating the predicate variables in the metapattern
with relevant table names and column names. These LDL++ queries are then run against
the database to gather the data. The resulting data is fed to one or more of the metapattern
actions, which acts on the data and returns appropriate results. These results are then used
by the Probabilistic Rule Constructor to build final patterns in the format specified in the
current metapattern. If desirable, the discovered patterns can be stored persistently in a
online knowledge base for various uses.

To illustrate the mechanism, consider, for example, a database that has 4 tables, each with
an arity of 2. Suppose that tablel and table2 specify ingredients of chemical compounds,
and tabled and table4 specify properties of compounds (These facts can be presented to
the system by experts or be extracted automatically from the schema by the metapattern
generator). If we are interested in finding the relation between ingredients and properties,
then a proper metapattern is as follows:

Ingredients(X,c1,c2) A Property(X,Y) = Cluster(Y)



where Ingredients and Property are variables for table and column names, X and Y are
variables for data, ¢; and ¢, are constants, and Cluster is a metapattern action. Given this
metapattern, the instantiator instantiates it into a series of LDL++ queries with variables
bound to appropriate table and column names. In the current example, such LDL++ queries
are:

QLY) « tablel(X,cl), table2(X,c2), table3(X,Y)
Q2(Y) « tablel(X,cl), table2(X,c2), tabled(X,Y)

Each rule is run against the database, and a set of values that satisfy the constraints
on the right-hand side of the rule is fed into the Cluster action. The cluster classifies these
values into a set of classes, each with a mean value, a variance, and a likelihood. For example,
when ¢;=‘BX89’ and c,=‘GF102’, the Y values that satisfy the first rule may be classified
into two classes: (m1,v1,5) and (mq, vy, l2), where m; are mean values, v; are variances, and
[; are the likelihood of the class.

These clustering results are then fed into the Rule Constructor, which uses the current
metapattern as a template to generate a final rule. For example, suppose the two classes
above are: (m1=2.4, v1=3.5, [;=0.97) and (m2=202.0, v;=0.5, {,=0.03), then the final rule
constructed using the metapattern may look like this:

Ingredients(X,BX89,GF102)Atable3(X,Y) =
Clusters(Y)={(2.4,3.5, 0.97), (202.3, 0.5, 0.03)}

This rule says that for all compounds that contains ingredients ‘BX89’ and ‘GF102’, the
majority values Y of their property “table3” are near 2.4, but there are few values scattering
around 202.3. This type of rules can be used in multiple purpose. They can help chemists
to design new compounds with certain properties (e.g., adding sugar makes a dish sweat),
or they can signal the potential errors or exceptional values in the database. For example,
those values that around 202.3 in the above example can very well be errors because their
occurrence has such a low probability.

Up to date, the metapattern mechanism has had three applications: discovering patterns
from a large common-sense knowledge base, from a telecommunication database containing
a large number of real telephone circuits, and from a chemical research database representing
over 30 years of chemical research experiments. Interested readers can find more details in
(Shen 1992; Shen, Ong, Mitbander and Zaniolo 1994).

3 The Problem of Plasma Process Faulty Detection

The data to be analyzed in this paper are time sequences from the manufacture of semicon-
ductor wafers. Like many other industrial processes, wafer manufacture requires very tight
process control, yet contains some element of "black art”. The extremely high costs of the
manufacturing equipment and infrastructure, as well as the nature of the industry provide
strong motivations for improving the efficiency of the process, the quality of the products,
and yield.



Semiconductor wafer manufacture consists of four main operations performed several
times over. These operations are: growth or deposition, patterning or photolithography,
etching, and diffusion or implantation. Each operation consists of multiple steps during which
the wafer is subject to specific physical and chemical conditions according to a recipe. Testing
the unfinished product between manufacturing steps is expensive and difficult. Reworking
a bad product is almost impossible. This leads to two problems. First, when a problem
occurs at a particular step, it may go undetected till final test is performed, thereby tying up
downstream processing on a product that has already been doomed to be scraped. Second,
when final test indicates that a product is of bad quality, it is usually difficult to determine
which single step in the manufacture is the source of the problem.

Both of these problems would be solved if it were possible to collect the physical and
chemical conditions (called in-process data) of wafer processing, and to automatically deter-
mine the success or failure of each manufacturing step by inspecting this data. Until recently,
it was difficult to access the in-process data for most semiconductor manufacturing opera-
tions. Recent efforts by semiconductor equipment manufacturers and semiconductor wafer
manufacturers have resulted in the establishment of a common interface (SECS: Semicon-
ductor Equipment Communications Standard) through which different manufacturing tools
can make their in-process data available.

The thrust of this work is to use the metapattern mechanism outlined above to correlate
in-process data from the etch operation to the quality of the etch. We specifically study
metal etch using reactive ion etch techniques in plasma etchers.

A reactive ion etching operation is a process in which reactive gas plasma ions are ac-
celerated to the wafer surface where both chemical reaction and sputtering take place in a
controlled manner to produce the desired etch profile. Typically, etch follows a photolithog-
raphy operation. In the case of metal etch, a wafer is covered with metal in a metalization
step. Then the desired patterns are drawn using photolithography. Finally, etching is used
to remove the excess metal, leaving behind the required patterns of metal.

Sensors within a plasma etcher measure several hundred parameters. A subset of these
parameters are periodically captured (approximately once a second) and made available as
in-process data. This constitutes the time sequence data. In a typical scenario, a wafer
can spend more than 200 seconds in an etcher. A hundred parameters measured once a
second yield a maximum of 20,000 measurements for a single wafer. The large amount of
time sequenced data make this a particularly interesting application of machine learning
techniques.

Technically, the task we face is that given a set of positive and negative wafer etching
operation examples, each being represented as about 100 data sequences (one sequence per
parameter) with more than 200 time steps, to induce a set of probabilistic rules that can
detect defective wafers during their manufacture process in real-time. Such detection may
occur even before a manufacture operation is completed so that timely corrections can be
made to the process to minimize the loss of productivity.



positvecxamplepl  p——
positive example p2 I
negative example nl

negative example n2

typical positive sequence (tps) | |
Figure 3: Constructing a Typical Positive Sequence from Examples

4 The Time-Sequence Fault-Detector

The data collected from wafer etching operations have a large quantity and high dimensions.
We have 65 example operations, each has about 100x200 values (parameters X time steps).
These pose challenges to most off-shelve machine learning technologies, for most of them
prefer training data as attribute-value pairs. In order to use them effectively, one would
have to treat each wafer operation (1) as a single, huge training example that has 100x200
attributes; (2) as 200 training examples, one for each time step, with 100 parameters as
attributes; (3) as 100 training examples, one for each parameter, with 200 time steps as
attributes; or (4) some combinations of the above. None of these, however, could capture
the temporal information in the sequence data.

To solve this problem, we used various metapatterns to view the data in order to get useful
observations. After learning from experts that operations with the same “recipe number”
ought to have similar behavior, we found one metapattern very useful:

recipe_number(W, ¢;) A Parameter(W,V) = Ploter(V)

where recipe_number is a specific parameter, Parameter is a variable for any other parameter
in the operation, W is a variable for wafers, ¢; is constant, V is a variable for values,
and Ploter(V) is a metapattern action that plots the sequence corresponding to V. This
metapattern allows us to visualize a single parameter space (i.e., a set of “similar” sequences)
across all training operations (both positive and negative) that have the same recipe number.

From the plotted sequences, we notice that they indeed behave similarly and they seem to
share some underlying regularity along the time line. (For some parameters, the behavior is
so “similar” that there is no difference between the positives and the negatives.) Furthermore,
the negative sequences seem to deviate more from the regularity then the positive sequences.
From these observations, we realize that (1) we need only to focus on the parameters that
make a difference, (2) a single training “unit” should be a sequence itself (not as pairs of
attribute-value), and (3) our real problem is how to approximate the underlying regularity
for each parameter and characterize the deviations so that the negative sequences can be
distinguished from the positive ones.

To approximate the underlying regularity for a parameter, we take a simple approach by

7
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Figure 4: Learning Threshold for Allowed Deviations of Values, Durations, and Time Shifts

constructing a typical positive sequence (TPS) based on the average of all positive sequences.
This can accomplished by our existing metapattern action Cluster. For example, in Figure 3,
a typical sequence (tps) is induced from two positive sequences, pl, and p2, by taking the
mean values along the time line.

To characterize the deviations, we notice that all deviations can be represented in terms
of three “features:” the difference in values (Ah), the difference in durations (Aw), and
the difference in times that changes occur (As). Using these features, we can represent the
deviations of a sequence (relative to a TPS) as points in a two-dimensional space as follows.

First, we subtract the typical sequence from each positive and negative sequence to
produce a difference sequence as shown in the left-hand side of Figure 4. And then, we
extract Ads and Avs from a difference sequence, where Ad represents the time deviation
and Av represents the value deviation. For example, in the difference sequence “tps-pl”
in Figure 4, Adl is the time deviation and Avl is the value deviation when comparing pl
with tps. Ads and Awvs together approximate the three deviations, Ak, Aw, and As defined
above. As illustrated in the current example, the Ads and Avs in “tps-pl” and “tps-p2”
approximate the Ak, while the Ads and Aws in “tps-nl” and tps-n2” approximate the Aw
and As. As the result of this procedure, the deviations of positive and negative sequences
relative to a TPS are mapped onto points in a two dimensional space defined by AD and
AV as shown in the right-hand side of Figure 4.

Given the points in this two-dimensional space, our task is to learn the threshold(s)
between the positive points and the negative points. This again can be accomplished by our
existing metapattern action Classifier. To complete our example, the threshold is shown in
the right-hand side of Figure 4.

As we have seen now, a time-sequence fault-detector composes two elements: a typical
positive sequence and a threshold. Using these two elements, we can detect potential faults
in new sequences in real-time. To do so, the typical sequence is constantly compared with
incoming sequence to generate time and value deviations. These deviations are then matched
against the threshold(s). If any of these deviation falls on the negative side of the threshold,
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the detector triggers an alarm indicating that there is a possible fault in the current sequence.

Consider, for example, the two new (unknown) sequences, ul and u2, in Figure 5. Both
ul and u2 are similar to the typical sequence tps except that they have an irregular pulse. In
addition, u2 has been shifted a little to left. When comparing u2 with tps, as shown in the
difference sequence, tps-u2, as soon as Ad8 and Av8 are generated and matched against the
threshold, an alarm will be triggered because this point is above the threshold. The sequence,
ul, on the other hand, goes through the same process without triggering any alarm because
its deviations, Av6 and Ad6, are below the threshold.

Using this approach, we have successfully classified all the example etch operations we
have. We are now waiting for more data from the manufacture for further testing and
evaluation, the results of which will be reported in the near future.

5 Conclusions and Future Work

We have presented an application of the metapattern mechanism to time sequence analysis.
Using metapatterns, we have effectively made some interesting observations which helped us
to find a good solution to the problem. Interestingly, the solution employs several metap-
attern actions that already exist in the mechanism, such as Ploter, Cluster, and Classifier,
and can be implemented as a single new metapattern:

recipe_number(W, ¢1) A Parameter(W,V) = BuildFault Detector(V)

where the new action BuildFaultDetector performs the procedure described in the last section.
This metapattern results a set of fault-detection rules for the recipe number ¢; (one rule for
each parameter).

The shortcoming of the approach is that parameters in an operation are assumed to be
independent. This seems appropriate for the data we have so far. If this becomes an obstacle
in the future, we plan to relax the assumption by assuming pairs (or more) of parameters
are independent from each other so that the same approach can still be useful. However,

9




due to the high computational complexity, the effectiveness of this naive extension remains

to be seen.
Nevertheless, the initial success of applying the metapattern mechanism to time sequence

analysis has further strengthened our belief that metapattern is a powerful tool for data
mining. Research and implementations are currently underway to make it an on-line service
for the Plasma machines in Motorola.
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